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ON CONVERGENCE OF ITERATIVE METHODS
IN PLASTIC STRAIN ANALYSIS

KERRY S. HAVNER

Advance Structures and Mechanical Department, Douglas Aircraft Company, Santa Monica, California

Abstract—Two general formulations and solution techniques for plane strain plasticity problems are investigated :
the effective force and material-stiffness matrix iteration methods. Compatible finite-difference models are derived
by minimizing a discretization of the potential energy function over a general boundary configuration, using
the Hencky-Nadai hardening law to mathematically model the material behavior. The resultant material
stiffness matrices are symmetric, positive definite, and block tri-diagonal. Analytical and numerical studies of
the accuracy and convergence characteristics of the methods are given for matrices of order 1000.

1. INTRODUCTION

THE well known total laws of the deformation theory of plasticity constitute a valuable
model for thermomechanical plastic strain analysis. Their utility.in problems of non-cyclic
loading is firmly established through extensive application, and theoretical objections to
their use have been clearly answered in the literature [1-6].

One of the more widely used deformation theories is that of the Hencky-Nadai
hardening law based upon the von Mises yield criterion. In numerical stress analyses using
this mathematical model, a procedure frequently is followed of formulating the problem
as a set of quasi-linear differential equations and then obtaining the solution by an
iterative technique. For two and three dimensional problems, this normally involves a
finite-difference or finite element discretization, large order matrix equations, and the
accompanying questions of consistency of formulation, order of discretization errors,
stability of solution algorithm, and, most importantly, the numerical accuracy and
efficiency of the overall method. It is the purpose of this paper to analyze and compare,
within the framework of these questions, two energy-based finite-difference formulations
and solution techniques for elastic—plastic plane strain problems: (1) the material-stiffness
matrix iteration method previously suggested by the writer [7], and (2) a generalization of
the effective force method of Ilyushin—-Mendelson-Manson [8, 9].

2. THE QUASI-LINEAR FIELD EQUATIONS

For ‘a material subjected to both thermal and mechanical loading and obeying the
Hencky-Nadai hardening law in the plastic range, the stress-strain law is (using the
indicial notation of cartesian tensor calculus)

1 v
&= EO'U—EO',‘,‘(SU—(XT(SU'*‘ Gl-pj (1)
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wherein o« and T are the coefficient of thermal expansion and the temperature rise,
respectively, J;; is the Kronecker delta, and

K
25

(2)
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The deviatoric stress tensor s;; = a;;—30,0;;, and the equivalent stress and equivalent
plastic strain are related through the tensile test and defined as

g = \/ (%sklskl)’ &r = &%(o) = \/ (’.Zisfxﬁfx)- (3)

Combining these equations with the equilibrium equations and the small strain—displace-
ment relations

&; = %(ui,j'*' uj,i)a “4)

Ilyushin [8] derived a set of quasi-linear differential equations by “‘lumping’ all of the
plasticity effects into a fictitious body force term. Ilyushin’s equations, extended to include
thermal loading, can be written

(At Ge,+ GV?u;+ F,—{(3A+ 2G)aT},,—R; = 0. 5
R; is the effective body force due to plastic strains, given as
Ri = ZG(weu),J = %Gwe,ﬁ‘ Ga)VZui-l' Gw,}’(ui’j'}' uj,i)—-%Gw,,«e. (6)

The scalar e is the volumetric strain w,;; e;; = ¢;—3ed,; is the deviatoric strain tensor;
and w is a plasticity parameter, first defined by Ilyushin, which equals
Gsec &P
w=1 G - 3Gm& 4

where G, is the secant modulus of the theoretical stress—strain curve of pure shear
predicted by the tensile test. The concept of the effective body force has been used in
integral equation solutions of several one dimensional problems by Mendelson and
Manson [9]. For plane stress and plane strain problems, Ilyushin’s concept has been
incorporated within a stress function formulation by Roberts and Mendelson [10] and
Tuba [11, 12]. More recently, Tuba [13] has given a direct finite-difference displacement
formulation of the effective force method and has presented results for the problem of a
circular hole in a uniaxially loaded plate. Other applications of the effective body force,
also referred to as the initial strain method, have been given by Webster and Ellison [14)
and Khojasteh-Bakht and Popov [15].

An alternate set of quasi-linear equations has been derived by the writer [7] in terms
of pseudo material properties, using the relative minimum energy principle of Kachanov
{16] and Greenberg [17] for the Hencky—Nadai material. These equations are

(A4 G¥e,t G*V2urt G* fu, ;+ u; )+ A% e+ F,— {(34+ 2G)T}, = 0. (8)
The variable “material properties,” iA* and G* = G,,, are analogous to the Lamé

constants but are defined in terms of the secant modulus E* = E_,, (from the tensile test)
and an effective Poisson’s ratio v*, given as functions of a plastic strain parameter  :

E* = E/(1+ y), v¥ = (v+0-5¢)/(1+ ¢) 9)
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with
Y = #7/8F = E&?/s. (10)

It is easily shown that equations (5) and (8) are algebraically equivalent for a given plastic
strain field in a thermo-mechanical deformation problem. Unfortunately, the plastic
strains are never ‘‘given,” and in many cases one begins with an over-stressed elastic
solution by taking the plastic strains to be zero. Thus, when these equations are viewed as
bases for methods of successive approximation, we see that they embody distinctly
different iteration procedures. And if proper care is not exercised in the manner of
discretization, they even can differ significantly in their respective numerical models.
To avoid this latter difficulty, the technique of forming the quasi-linear difference equations
from the discretized potential energy function, given in [7] for the stiffness matrix iteration
method [equations (8)], will be extended in Section 3 to the discretization of equations (5)
of the effective force method.

3. ENERGY FORMULATION OF DIFFERENCE EQUATIONS

The total potential energy function for the Hencky-Nadai material can be expressed
1
Il = 5 J‘R [G(u,-'j'f' uj';)ui.j+ Auf’k - 2(3}.+ 2G)aTuk‘k

+ 3034+ 2G)(@T)? - 2Fu)dR— | X, dS (11)

St
_ f [G J. ”wd(eije,.j)} dR
R 0

where S; is that portion of the boundary $ on which tractions are prescribed. The first
two integrals correspond to the uncoupled thermoelasticity problem; the third integral
is the source of the fictitious body force in Ilyushin’s equations (5) [which, of course, can
be derived by applying the extremum principle of Kachanov—Greenberg to equation (11)].
For problems of plane strain, replacing x,, x, by x, y, u;, u; byu,vand X, X, by X, ¥,
a quadrature formula for the potential energy may be written

=0~ ; [(34+ 2G)aT (@, + b,,)+ Feut Fyp
=334+ 2G)(@T)*|, AR~ ¥ (Xu+ Yv),AS, — ¥ [Gweye ), AR,  (12)
Sr R
with

Q= ;l[G{ uL+ Myt 0,02+ 051+ 3A@,.+ 5,)° L, AR,. (13)

In equations (12) and (13) the integrations over R and S; have been replaced by summations
over a discrete set of points g and ¢’ corresponding to some finite-difference network,
with AR, and AS, representing the associated incremental areas and boundary curve
lengths, respectively. (The horizontal bar above a function indicates the corresponding
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discretized form.) The plastic strain term of equation (12) becomes, upon expansion,
Z [Gwéklékl]qARq = Z [Gw{%(ﬁfx - a»xﬁ,y_'- 5§)+ %(aw_lh ﬁ’x)z}]qARq . (14)
R R

The discrete analogy of the continuum minimum energy principle is realized by equating
to zero the rate of change of 1 with respect to each unknown displacement. Expressing
[T in matrix terms we have

0 = 3{6}7(A41{6} —{6}7{0o} + Dr— {6} [P]{5} (15)
and the matrix equilibrium equation becomes
o
{—g} = [A){3} - {30} ~[P){8} = 0. (16)

The symmetric matrix [A4] is the coefficients or material-stiffness matrix of the thermo-
elastic problem. It is of order (and rank) N equal to the number of unknown displacements
in R+8§;. {8} is the column vector of these unknown displacements, and {,} is the
“loads” vector for the thermoelastic problem determined from the first temperature term
in equation (12), the body force and prescribed traction terms, and prescribed displacements
on Sp,. The scalar D arises from the second temperature term and terms quadratic in the
prescribed displacements. The matrix [P], also of order (but not necessarily rank) N,
will be called the plasticity matrix. The quadratic form involving [P] in equation (15) is
the sum of all terms in equation (14) which are quadratic in the unknown displacements in
R+ 8. For the first boundary value problem of a body in equilibrium under thermal
gradients, body forces, and prescribed surface tractions, this sum encompasses all of the
terms in equation (15). Thus we can write

Ho}T[P){6} = ¥ [G{3ul —it,.0,,+ 02)+ 3id,,+ 7,,)°}1,AR,. 17
R

From equation (7), Gw > 0 for all strain levels in a Hencky-Nadai material with a
monotonically increasing stress—strain curve. The sum of the terms within the braces is
easily shown to be positive semi-definite ; hence, equation (17) represents a positive semi-
definite quadratic form and [P] is a symmetric, positive semi-definite (or non-negative
definite) matrix. [P] clearly is not positive definite in general, for in problems with regions
of purely elastic response the rank of [P] will be less than the order N. If the entire body
is in the elastic range, [P] is of course the null matrix. Consider now the symmetric matrix
[4]. For the first boundary value problem defined above, the positive semi-definite
quadratic form Q is

Q = ${s}1[A]{5} (18)

from which [A] is a positive semi-definite matrix. Since [A] corresponds to the elastic
problem [A]{d} = {J,}, it should yield finite-difference equations which are consistent
in the sense defined by Tanrikulu and Prager [18]. This can be accomplished (to a degree)
for a network consisting of rectangular and triangular grid elements over an arbitrary
domain, as shown in Fig. 1, by using quadrature formulas of the type suggested in [7].
Appropriate formulas for evaluation of the terms in equation (13) are given in the Appendix,
together with similar formulas for equation (14). From the comparison therein of the
resulting difference equation in the X-direction with the corresponding equation from the
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FiG. 1. Interior point of finite-difference grid.

matrix iteration method (derived in [7]), it is seen that the discrete models of the alternate
quasi-linear formulations of the plane strain plasticity problem are compatible.

4. ANALYTICAL COMPARISON OF SUCCESSIVE SOLUTION METHODS

The recursion formulas for the nth iteration step according to the equivalent force
method of equation (16) are

[A1{8s} = {do}+ [PJ{0s 1}, n>1

(19)
[Pn] = [P(w,,(x, .V))]a wn(x’ }’) = c0(511-1)
with the attendant starting condition
[41{6:} = {d0} (20)

such that [P,] is the null matrix.
Analogous equations for the nth iteration of the material-stiffness matrix as given in
[7] are

[A31{0a} = {80}, n>1
[A7] = [A*Walx, ], alx, ) = W00, 1)

with a starting condition identical to equation (20). The matrix A*, corresponding to
finite-difference equations of the type equation (A6), is positive definite. Its elements are
bounded for any set of 1*, G* physically obtainable from an elastic Poisson’s ratio in the
range 0 < v < 0-5. Consequently, the iteration as defined by equations (21) cannot diverge
unbounded [7].

A sufficient condition for convergence of this method of successive solutions is that y
increase monotonically from zero over all network points experiencing plastic deformation,
a proof of which is given in [7]. It can be argued that monotonic increase in § (hence w)
is also a sufficient condition for (1) monotonic convergence to the discretized minimum
potential energy function from above and (2) convergence by the iterative method of
equations (21) in fewer number of cycles than by the method of equations (19). Consider
the initial approximation to IT which corresponds to the “‘elastic’ solution of equation (20).
This first approximation can be written

M, = —3{6,}7{d0}+ Dr. (22)

21
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An improved value is obtained by subtracting the quadratic term 4{5,}7[P,]{d,}
computed from the first solution vector {4, }. Although [P,] is only a positive semi-definite
matrix, the quadratic form will be positive since {d,} is a non-zero displacement field
over all network points with which non-zero values in [P,] are associated (unless [P,] is
the null matrix, in which case the elastic solution is the final solution). Hence, the first
correction to the energy is algebraically less than the initial value I1,. Consider now the
discretized energy corresponding to the nth successive solution of equations (21):

nn = %{5n}T[A] {571} - {6n}T{60}+ DT_%{én}T[Pn] {6n} (23)
where
[A] = [P0, _1)] = [43(5,_1)]- 24

If we were to end the iterative process at this point, a final improved value for [1 could
be written

n;x = %{5n}T[A] {611} - {5n}r{50} + DT_%{én}T[Pn+ 1] {5n} (25)

with [P, ,] = [P(4,)]. From equations (7), (9), (10), (14) and (17), the plastic strain term
in the potential energy function may be expressed

HoYT[P1{o} = ; (Gweyeul AR, = ;%[Gw(l + v¥)*&2] AR,. (26)

From equation (9), it is seen that v* increases with . The total equivalent strain
&§=2¢&,+tG/E =(1+yY)6/E 27)

at each point g also increases with ys. Alternately, it can be shown that the elements in [P]
increase linearly with the function

Ay,

bu= A+ v+ 1-5¢ )1+ v+ 150, )

(28)

Thus, the quadratic form of equation (26) increases monotonically for monotonic increase
in y over all (or a sufficient number) of the network points, and I1, < I1,. Extending this
argument, we conclude that the potential energy will converge to the minimum value from
above monotonically with . Numerical demonstration of such convergence is given in
Section 6.

To compare the relative convergence rates of the matrix iteration and effective force
(vector iteration) methods, consider the first improved values of the initial solution vector
{8,} as determined by these methods. Denoting the respective corrections as {5,} and
{83}, we have, from equations (19)(21),

{63} = {6,}+[4] _1[P2]{51} (29)
for the effective force method, and
{02} = {0,}+[4] '[P.]{d3} (30)

for the matrix iteration method, with [4]—[P,] = [4%]. Comparing these equations and
taking into consideration the properties of [4] and [P] and the condition {85}7{5,} >
{6,}7{8,} (from the decrease in the energy approximation), it seems reasonable to conclude
that equation (30) affords a greater improvement in the solution vector. Consequently,
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at the next step the elements of [P5(53)] will be less than the elements of [P;(8%)], and as the
P} operator acts upon the to-be-computed vector {445}, the matrix iteration method again
will yield the more improved solution. Continuation of this argument leads to the conclusion
that the iterative process of equations (21) will require fewer cycles to satisfy a specified
convergence criterion than will the process of equations (19), for monotonically increasing
¥(x, y). Numerical confirmation is presented in Section 6. A conceptual comparison of the
two methods is depicted by Fig. 2.

1
CURVE OF SUCCESSIVE CURVE OF SUCCESSIVE
\
F] \\/ SOLUTIONS / SOLUTIONS

\ A v \ 2 :
3 E 4
E \//} 5
6 6
g=Ef(g) 3 =Ef(@
MATRIX ITERATION EFFECTIVE FORCE
METHOD METHOD
0 € 0 4

F1G. 2. Comparison of successive solution methods.

An additional consideration that applies equally to the two discretizations of the
quasi-linear field equations is the question of general accuracy of the variational approach
at and near the boundary. An investigation of the discretization (or truncation) errors
associated with energy-derived difference equations in thermoelastic stress problems given
in [19] can readily be extended to the plane strain plasticity problem treated herein. The
principal result is that a difference equation at the boundary can be represented as a linear
combination of the corresponding natural boundary condition and quasi-linear field
equation, converging to the discretized boundary condition with decreasing grid size.
The boundary discretization errors primarily depend upon the grid density normal to the
boundary. Hence, effective error control is obtainable with only local changes in network
spacing, as demonstrated numerically in [19]. For a uniform grid and boundary segment
normal to the X-axis, denoting BC, as the natural boundary condition, FE, as the field-
equation, and DE_ as the difference equation:

(DE,); = (BC.),~ H(FE )+ O a1

or, simply
(BC,);;—(DE,);; = O(h). (32)

In terms of the discretized boundary condition and field equation (using second order
approximations for the derivatives), the difference equation may be expressed

(DE), = (BT.),,~ (FE.), (33
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which converges to the discretized boundary condition
(A*l_l,x)ij+ (/l*l_),y)ij—— T, = X;

as h approaches zero, where T;; replaces (344 2G)aT.

In contrast to the energy-derived equations, the truncation errors at the boundary
from a direct finite-difference discretization of the differential equations generally are of
O(h?). Such is the result, for example, if the method of quadratic approximation suggested
by Greenspan [20] and the writer [21, 22] is used. However, for this method of formulation
as well as for the various boundary approximation techniques which involve fictitious
points (see [23] and [24]), the symmetry of the material-stiffness matrix is destroyed and it
becomes extremely difficult if not impossible to establish positive definiteness. In the
author’s opinion, the advantages of having these properties far outweigh the disadvantage
of the somewhat larger discretization errors at the boundary obtained from the energy
formulation.

It is important to note that the convergence arguments and analytical comparisons of
the effective force and matrix iteration methods given herein depend only upon the general
characteristics of the matrices [4] and [P] and not upon the details of the quadrature
formulas used in the integral approximations. Thus, the discussions in this and the
following section apply equally well to a triangulated net with pyramid functions used to
approximate the displacement field [18, 25, 26]--that is, to the basic element of the finite
element displacement method [27]. In addition, the energy formulation of the difference
equations for such elements leads to the same O(h) truncation errors at the boundary [26].

(34)

J

5. GENERAL REMARKS ON CONVERGED SOLUTIONS

As briefly discussed, the truncation errors of the finite-difference discretization are
well-defined for a given plastic strain field and are identical for the numerical models
presented. In an actual iterative computational process, however, these errors may lead to
somewhat different final results as determined by the two successive solution methods.
This because the plasticity parameters w and iy are obtained at each network point and
in each cycle by numerically differentiating the most recently computed displacement
fields, and these fields differ after the initial “elastic’” solution {&,}. In addition, at each
iteration step there are round-off errors associated with the solution of either of equations
(19) or (21) which may be of consequence, depending upon the size of problem and the
solution algorithm adopted.

Consider the nth solution step of equations (21). Since the matrix [A*] is positive
definite and block tridiagonal (as discussed in [19]), it can be decomposed into the product
of lower and upper triangular matrices [L,,] and [U,,]:

[A*()1{0m} = [Lp)[Unl{dm} = {So}. 35)

The structure of [A*] is preserved upon triangular decomposition, from which [L,] and
[U,.] are block bi-diagonal. In terms of submatrices we may write

(a2 = ler ac,) = i, = lLioyfopu, (36)
1 | |

where the order of submatrix 4; equals the number of unknown displacements in row i
of the finite-difference grid. The computations required in the decomposition are given by
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the recursive formulas
D, =4, U;,=C;
L; =CI_ D}, i>1 37
D;=4,-LC;_,, i>1.
The solution vector is obtained by the forward-backward substitution process

[Lm]{Ym} = {50}
(Ul {5m} = {Ym}

The rounding errors inherent in this solution algorithm are primarily associated with the
decomposition process of equation (36) [28]. They have not proved significant in any of
the problems investigated (see Section 6) and henceforth will be considered secondary
to the truncation errors of the successive solutions method. Turning attention to these
latter errors and denoting by ¢¥ and &} the equivalent stress and strain actually computed
from the displacement vector {4,,}, numerical convergence of the recursion equations (21)
after m steps implies that

(38)

(39)

B e

at each network point, where e, is a specified criterion of “error” tolerance. The variables
in this equation are computed from the relationships
E . VTOSY, ey

Vm = » l}[lm‘” -
1 1+ m ;{!vl
1 Vm ¥ Sfleny) (40)

VU@~ it,8,,+ 520+ Hity+ 5,20 1)

E; =

& e
Thus, equation (39) states that o and ¢*, which identically satisfy the equation 6% = EXc¥,
also satisfy the tensile stress—strain law (Fig. 2) & = Ef(£) to within the specified tolerance.
If e, be taken equal to zero over the computational digits of interest, the convergence
criterion becomes ¥, ., = ¥,. Denoting AZ,, as the truncation error in the computed
value g¥ of the “‘true” equivalentstrain ,, (such that g} = £, + Ag,), and restricting attention
to a linear strain-hardening material of tangent modulus E;

f(&) = (1—~1teg+té “n
where t = Er/E < 1, we find that, from equations (40) and (41),
e &+ AE g g Aé
megtl=—""- =" L B el oy RNy 42
Ve P 1= 208 = ot e 1) [ f(em)]f(sm) @)
Hence, defining p = §,/8,, a measure of the error in the “converged” value of ¢ is
fGEn) En| [1+2ip—Dlee &

which is of order h or higher. There is no apparent way of eliminating this error from the
computational process other than to use a finer grid, which in turn may lead to round-off
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errors of greater significance. The combination of the two sources of error does not appear
to be critical, however, based upon numerical results for problems involving relatively
large (1000 to 2000 order) matrices. These results are reported in part in the following
Section.

6. NUMERICAL APPLICATION

The methods of discretization and successive solution discussed herein have been
programmed for the analysis of an infinitely long bar with a parabolic temperature
variation in the transverse Y-direction (Fig. 3). The finite-difference grids that have been

£ -107
E7-108
1 oy - 1
DEFORMED | a- 105
CONFIGURATION—={ v. 11

Fic. 3. Longitudinally constrained, thermally loaded bar.

used in the numerical computations, with each corresponding matrix order in parentheses,
are (one quadrant of the bar only)

(a) Uniform 21 x 21 grid (N = 840)
(b) Quasi-uniform 22 x 22 grid (N = 924)
(¢) Uniform 30 x 30 grid (N = 1740).

The quasi-uniform grid is obtained from the uniform 21 x 21 grid by the addition of a
grid line halfway between the free boundary and the first interior grid line.

The programs have been written in FORTRAN 1V using single precision arithmetic,
and all computer times quoted are for a UNIVAC 1108 digital computer with intermediate
dccess drum storage. Two studies have been made to assess rounding errors in the matrix
decomposition and solution process : (1) comparative solutions of 90° rotated temperature
fields, as reported in [19] for the analogous plane stress problem; and (2) use of a double
precision routine to improve the solution vector via an iterative technique given by
Wilkinson [28]. These studies indicate that, even for the 1740 order matrix, the initial
solution vector has errors only in the sixth digit. For this reason, single precision arithmetic
has been deemed adequate, and Wilkinson’s technique of improving a solution vector has
not been used in the computations of the elastic—plastic problem.

With the objective of attaining sufficiently accurate solutions (from the standpoint of
design stress analysis) without undue expenditure of computer time, a convergence
criterion has been chosen of less than one hundredths of one per cent change in the vector

N
norm |8, where [|6]]> = ¥ 7. Its adequacy has been tested by comparing results for the
i=1

21 x 21 grid based upon this criterion with those obtained by continuing the successive
solutions process until the vector norm ceases to change through eight places. From this
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it is concluded that the 0-01 percent criterion will yield displacements converged to five
significant figures and stresses converged to four. All results cited herein are based upon
the use of this criterion.

A comparison of the matrix iteration and effective force methods as to number of
iterations for convergence and total running time for the entire solution is given in Table 1.

TABLE 1. COMPARISON OF CYCLES TO CONVERGENCE AND COMPUTING TIMES

Elastic solution Matrix iteration Effective force

N=924 N=1740 N=924 N=1740 N=924 N=1740

Iterations 1 1 5 5 9 10
Computer time (min) 12 30 55 147 54 146

The numbers shown correspond to a maximum temperature of 2000°F. Other problems
with higher and lower temperatures also were calculated. In all cases, the matrix iteration
method converged in significantly fewer cycles than did the effective force method,
confirming the arguments of Section 4. Relative computational time is another matter,
however, and it is important to comment upon this as it pertains to the larger question of
developing efficient plastic strain analysis programs for use in thermostructural design
studies. If the system of simultaneous equations were to be solved by an iterative method
(such as successive overelaxation) at each step, the computational times would be precisely
the same per cycle by either method. In that instance the matrix iteration procedure clearly
would be superior due to the fewer number of cycles required for convergence. But when an
efficient tridiagonal matrix decomposition technique is available, as here, the per cycle
time of the effective force method can be considerably less. This is because the submatrices
L;, D;, U; of the decomposed matrix [4] can be saved in intermediate storage once they
are computed for the initial solution {§,), and only the forward-backward substitution
process of equations (38) need be repeated in successive cycles. In contrast, at each step
of the matrix iteration method, [A}] first must be decomposed before the substitution
process can be carried-out, and this decomposition requires the greater part of the solution
time. Thus, although the total running times are comparable for the problems investigated
{Table 1), given a matrix inversion algorithm, the effective force method could prove to be
the more efficient for significantly larger order problems (say, N > 4000). It also should
be noted that the effective force concept is more readily adapted for use with incremental
theories of plasticity [10, 15,29]. (For comparisons, in incremental loading problems, of
the effective force method and another technique variously called the tangent stiffness [15]
or tangent modulus [30, 31] method, see [15] and [32]))

In Section 5, the error sources which can lead to differences between converged solutions
corresponding to the two iterative methods were discussed. In Table 2 and Figs. 4, 5,and 6,
the significance of these errors can be assessed thiough a comparison of results for the
30 x 30 grid. Table 2 gives the u-, and v-displacements along the free edges x = 1 and
y = 1, respectively, as computed by each method. From a comparison of values over all
the network points, the results in general differ by one per cent or less in the u displacements
and two per cent or less in the v displacements. In Fig. 4, the g, stresses along representative
grid lines obtained from the two plastic solutions are plotted, together with the values
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TABLE 2. COMPARISON OF DISPLACEMENTS ALONG FREE EDGES

Matrix Effective Matrix Effective
iteration force iteration force
Yo x u displacements (x = 1) v displacements (y = 1)
0 0-00204 000204 001159 001165
2/29 000215 0-00215 001157 001163
4/29 0-00247 0-00247 0-01152 001158
6/29 000300 0-00300 001143 001148
8/29 000374 0-00374 001130 001135
10/29 000468 0-00467 001111 001116
12/29 000579 0-00578 001087 0-01092
14/29 0-00708 0-00706 001055 0-01060
16/29 0-00851 0-00849 001014 001019
18/29 0-01008 001005 0-00961 0-00966
20/29 001178 001174 0-00894 0-00899
22/29 0-01361 001357 0-00810 000815
24/29 0-01555 001551 0-00704 000709
26/29 001753 001750 0-00572 000577
28/29 0-01952 001949 0-00408 000413
1 002053 002051 000313 000318
ROW 30
0 (x=1)
NOTE:
NORMAL BOUNDARY STRESS
DEVIATES SIGNIFICANTLY FROM
ZERQ AT CORNER DUE TO
LARGER TRUNCATION ERROR THERE
L40F
T — ROW 15
0 S (x - 0.483)
-40+ =
-80F ™
40
S ROW 1
0 -0
-40+
80+
-120
——————— ELASTIC SOLUTION
MATRIX ITERATION METHOD
------- EFFECTIVE FORCE METHOD
{STRESSES GIVEN IN KSD
y-0 y-1
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corresponding to the “elastic’” solution. Similar plots are given in Fig. 5 for the longitudinal
g, stress. In Fig. 6, contour lines of equal equivalent strain & are shown. Although the
observed differences between numerical results are not significant from the view of applying
these methods in practical stress analysis problems, it would be desirable to know which
of the two computational processes is the more accurate. This determination might be
realized through a comprehensive error analysis or through comparison with a closed form
solution, but neither the error analysis nor the ““exact” solution is readily accomplished.

Lastly, the monotonic convergence to the minimum potential energy from above is
shown in Table 3, together with a comparison of the convergence of the vector norms
corresponding to the two solution methods.

TABLE 3. POTENTIAL ENERGY AND VECTOR NORMS

Cycle 1 2 3 4 5 9 10
fi,-Dr m‘:‘"") —0000265 —0007493 —0007532 —0007537" —0007537 — —
18, it“;;‘“") 020906 020717 020672  0:20665* 020665 -
18, (Efz: 020906 020898 020753 020684 020654  020632% 020632

7. SUMMARY

An analytical and numerical comparison between two methods of successive solution
in elasto-plastic plane strain problems has been presented. Minimization of the discretized
potential energy function of a Hencky-Nadai material has been shown to yield a finite-
difference displacement formulation of the effective force method that is compatible with
the numerical model of the material-stiffness matrix method given in a previous paper.
A sufficient condition for monotonic convergence to the minimum energy from above has
been established, and convergence of the matrix iteration method in fewer cycles than
required for the force iteration method has been demonstrated. In contrast, the effective
force method requires equal if not less computer time than matrix iteration when a matrix
decomposition algorithm is available. Direct solutions of the quasi-tridiagonal, positive
definite stiffness matrices by block decomposition techniques have been shown to yield
accurate and efficient determinations of stress and displacement fields by either general
method.
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APPENDIX

For a rectangular element ij, i+1j, i+1j+1, ij+1 (Fig. 1) appropriate formulas for
evaluation of the terms in equation (13) are

f Gﬁszx dxdy = %G{(ui+1j—uij)2+ (“i+lj+ 1 U+ 1)2}%
AR i
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J:[ G, + ) dx dy = %G{(uij+l_uij+ vi+1j_vij)2+ (ui+1j+l'_ui+1j
AR 2 y 133 ﬂj él. nj

2 2
+vi+lj_vij + uij+1—uij+ Ui+1j+1—Uij+1)
& Hj &

2
+ (ui+1j+1+ ui+1j+ Ui+lj+1_vij+1) }fiﬂj
n; &

(A1)
_ &
f GU’Zy dxdy = %G{(Uij+1—vij)2+(Ui+1j+1—vi+xj)2}’
AR n;
—_ .. .. _— .. 2
ﬂ 3t 5, dx dy = 14{(“"“1‘ Hii e Ziixt ””)
AR 8 & 1

2 2
+ ui+1j—“ij+ Ui+1j+1—Ui+1j) + (“i+1j+1“uij+1+ Dij+17— Uy
& n; ¢ n;

2
Uirrj+1— Wijr1 . Vivrj+1— Viv1j
-+ ( + finj.

i n;
Corresponding formulas for a triangular element ij, i+ 1j, ij+1 are

Hj
&
1

— .. . o — s s 2
[[ 16+ .02 axdy = -G(“‘f“ iy et ””) &,
AR 4 n; ¢

J Gﬁ,zx dxdy = %G(ui+1j_uij)2
AR

: (A2)
f G023 dxdy = 3G(v;;4, —v;)*>"
AR nj

(e — i Ve i) 2
ﬂ L+ B,)? dxdy.—_z,l(u'“’ Mij 4 Bt 1) ;.
AR &i n;

The integral approximations of equations (Al) and (A2) are non-negative and equal to
zero only if the following relations hold for all i, j:

Ujr1j = Uij, Vij+1 = Uy

(A3)

n.
(uij+1_uij)+_J(vi+1j_Uij) = 0.

¢

These equations describe a rigid body translation of arbitrary magnitude combined
with a vanishingly small rigid body rotation. Hence, the discretization is ‘‘consistent”
with the non-uniqueness of the continuum solution of the first boundary value problem.
To eliminate the non-uniqueness in a particular numerical problem, it is only necessary to
speeify one u, one v, and at least one additional u or v, in which case the matrix [4] of
the mixed boundary value problem is positive definite, as shown in [7] for the material-
stiffness matrix of the matrix iteration method.

To ensure compatibility of the numerical model of the effective force method with that
of the matrix iteration method given in [7], similar quadrature formulas are used for
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evaluation of the terms in equation (14). For the rectangular element,
J] %Gwﬁ,zx dxdy = %G{(wi+lj+ wij)(ui+1j_ uij)2
AR
(s s _ _ nl;
(w1+1j+1 wij+l) . (u1+lj+1 uij+1) }é

J:f %‘Gwﬁ,xﬁ,y dxdy = % G{wij(ui+1j—uij)(vij+l_vij)+ wi+11(ui+1j_uij)
AR

. (Ui+1j+1" Ui+1j)+ wij+l(ui+1j+l_ uij+l)(vij+1_ vij)

+ wi+1j+1(ui+1j+1_“ij+1)(vi+1j+1_l7i+1j)}

(A4)
ff %‘G(Oﬁazy dxdy = %G{(wij+l+ wij)(Uij+1—Uij)2+ ((0.'+1j+1+ (Ui+1j)
AR

~(vi+1j+1_vi+1j)2}_l
;i

1 = Uis Viai=—D;i) 2
ff %Gw(ﬁ,y+ 5,,)2 dxdy = §G{w‘j Mij+1 u”+ Vityj v”)
AR n;

ui+lj+l ul+l_]+ i+1j 7 \\

nj 61 ,

uij+1 l]+ 1+1;+l u+1
i

+ w44

t w41

U141~ Wivtj | Vitrj+17 Ugjst
+wi+1j+1( — ", —+ g, % ) }6: "
with corresponding equations for the triangular element.
Summing the quadrature formulas over the network elements surrounding point ij and

then differentiating with respect to u;;, the difference equation in the X -direction is obtained:

[Z(nﬁr nj 1)( 3 + ——J (A+2G)+ 2+ & _1) + — (G)] 9 (ﬂﬂé jj-l)

(A 2G4 2(M) (A+ 2G)u; _y— 2(5‘ ) (G
(é 61 —1

)(G 1] -1 (j'+ G)(vl+lj+] vt+l} 1 Ui —lj+1+ U; —1j —l)+ (’71+ 7’1 —l)
'(1;'+1j_ i~1j)h_(€'+é'—l)(ﬂj+r’j—1)( )ijhz

4 i ij+ + i —+ ij
- [5(»1,-+ nj_x)G{ ’}+<é.-+ 3 _,)G{ S n“’}}

4{n.+n.
“ij_j(m g'.h =
_f it
3V &

l+1]+ wz1+ w; —1}+ ;

éi él —1

)G(wi+1j+ wij)ui+lj

) Glew; _j+ o)u; _y;— (_5_1‘4"”_5.:1) Gy +1F 041
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&t &
- (—11-_—1 G(a)ij a7t wij)uij I G(wij+1 - %wi+lj)vi+1j+l
i—1
t G(wij.»r‘%’wiﬂj)viﬂj at G(w.'j-n‘“%wi —lj)ui ~1j+1
_G(wij —l“'%wi ~1j)vi 11 (A5)

The difference equation in the Y-direction may be written by interchanging u and v,
x and y, £ and #, and i and j. Difference equations for points on or adjacent to the boundary
or developed in similar fashion.

For the matrix iteration method corresponding to equations (8), the quasi-linear
finite-difference equations are derived in [7] in terms of the pseudo material properties
A*, G*. The equation in the X-direction at a typical interior point is (denoting
A* = 1*+2G%)

oy +7. + & i+
['I; 7]3 «1( ?+1j+ A;)‘*“ ’?3 ";—I[A?_ij_*_ A;)‘*' éi ’?él—l(Gzi+1+ G:;)*’ éx’? 5 1‘ (G?}_x+ G;il
i i1 i it

i

Nt it
Xu J“#(A?‘«» 1j+ AE’})“i+1j——]Ef"J’”’1(A?_1j+ A?})“i -1

i i1

&t & St i
’“ii_l(G?}ﬂ"" G?j)uiji-l_'—é—!

i j-1
F A G GE - Wi o FAE Gl D0 1 — (A Gl Vi1

+{n;+n; T, . T; —1j)h'{fz+ & Ddmitn; —1)(Fx}ijh2 =0 (A6)
From equations (7), (9) and (10):
(A+2G)—3Gw,; = A},
G~ Gw;; = G} (A7)
A+ 3Gw,; = A%

Thus, equation {A5) can be transformed identically into equation (A6) for a given plastic
strain field.

(G;*j e G?j)“ij —1_('1?:+lj+ G?}+1)Ui+1j+1

(Received 23 June 1967 ; revised 1 December 1967)

AbGcrpakT—MWccnenyerca ase obuie GOpMyNHPOBKM K METOALI PeLIEHHst 3afad Jiockoro medopmauno-
HHOTO COCTOSIHUA NAACTHMHOCTH: MeToa 3ddexTHBHON CHNBI K METOA UTEPALAM MATPHLUBI KO3DDHLIHEHTOB
KECTKOCTH MATEPHANA. BBLIBOAMTCA COTAACHBIE, KOHEYHO-PAIHOCTRBIE MOJIENH NYTEM MHHMMANH3ALUMH
HAAUCKpeTHIaUMM DYHKUMH NOTEHUHANBHOK Hepruu no obuie#t KOBPUrypaimMu KOHTYpA, MCHOAL3YH
3aKkoH ynpouynenHs Xeuku-Hanas, C Uanblo NPE/CTABIEHHA MATEMaTHYECKH MOBEACHHA MaTepuana.
CyMmmaphbic MaTpuilbl XO3hHIIMEHTOB XECTKOCTH MATEPHANa ABISIOTCH CHUMMETDHMHBIMK, NONOXH-
TENBHO ONpeAesieHHbIMA M GJIOMHBIMH, TPEXAMArOHANBHBIMH. TIPUBOAATCA AHAHTHYECKHME M YUCHIEHHBIC
HCC/IEIOBAHYA XaPAKTEPHCTHK TOYHOCTH # CXOAHMOCTH METOZOB JITA MaTPHLLI panra 1000.



